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SUMMARY 

Size-exclusion chromatography (SEC) calibration curves are calculated using 
a range of models starting from those with simple, uniform pore geometry and cul- 
minating in a computer-assembled model, consisting of random-size touching 
spheres. This final model provides an excellent correlation between experimental data 
obtained with Hypersil and theoretical prediction with virtually no adjustable param- 
eters. Very good correlation is also obtained using the uniform-size random-sphere 
model of Van Krefeld and Van den Hoed. It is shown that SEC calibration curves 
can also be predicted with remarkable accuracy from mercury porosimetry data on 
the assumption that the matrix consists of an assembly of cylindrical channels having 
the same pore-volume distribution as that provided by mercury porosimetry. A 
simple mathematical inversion of this procedure enables the pore size distribution to 
be precisely determined from any SEC calibration curve. A serious error in previous 
procedures is noted and corrected. 

INTRODUCTION 

In chromatography a solute is said to be “excluded” if it travels along the 
column faster than eluent. Exclusion can arise for several reasons. If one component 
of an eluent is more strongly retained than solute, then the solute will be unable to 
displace eluent from the surface layer and so it will be excluded from that layer’; if 
the solute is charged and has the same charge as the particles of packing, it will have 
difficulty entering the particles due to the Donnan potential at the surface*; if solute 
molecules have dimensions commensurate with the pore dimensions, they will be 
sterically excluded from part of the pore volume. Only the last of these reasons for 
exclusion is widely used as a basis for separation in the technique known as size- 
exclusion chromatography (SEC)3, gel-filtration (GF)4 or gel-permeation chromato- 
graphy (GPC)s. 

Theories to explain size exclusion have been based upon differing rates of dif- 
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fusion of molecules of different sized, differential flow profiles in channels of the 
packing’J’ and upon steric effects9*‘0. The majority of chromatographers now agree3 
that size separation of molecules can be fully explained on the purely steric basis that 
large molecules can only partially permeate the pore volume of the support. Accord- 
ing to this view, small molecules (such as those of eluent) fully permeate the pores 
of the support material and are eluted in the void volume, V,; large molecules which 
cannot enter any of the pores are totally excluded and are eluted in the extra-particle 
volume, V,,; molecules of intermediate size are eluted between V, and V,. The degree 
of permeation of such molecules into the pore volume of the particles, VP, is denoted 
by K, and termed the “exclusion coefficient”. K is related to the elution volume, VR, 
of any solute by eqn. 1. K can have any value between 0 and 1. 

The pore volume is related to V,,, and V,, by eqn. 2. 

v, = v, + VP (2) 

The relationship of retention volume or exclusion coefficient to molecular 
weight for any packing material is normally displayed as a plot of log MW against 
V, or K, and is called an exclusion curve or SEC calibration curve. Typical examples 
are shown in Fig. 1. 

Since molecular weight is directly related to molecular radius for any polymer 
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Fig. 1. SEC calibration curves for polystyrene standards eluted from various silica gels with “uniform” 
pore size distributions (for further details see original reference). Hypersil” = commercial sample from 
Shandon Southern Products, Runcom, U.K.; SG6OF I1 = Experimental SEC material, prepared by 
AERE, Hat-well, U.K.; PSG60 and PSGl 5003 = SEC materials, prepared by Du Pont, Wilmington, DE 
U.S.A.; HR-WPS = experimental wide-pore, high-porosity silica gel, prepared by H. Ritchie, Department 
of Chemistry, University of Edinburgh. [Note: the values of V,,, and V. for PSG60 and PSGlSOO are 
estimated from data given (ref. 3)]. 
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in a given solvent, SEC calibration curves can easily be adapted to show the depen- 
dence of VR or K upon molecular radius. Such curves can then be compared directly 
with theoretically predicted exclusion curves. 

THEORETICAL EXCLUSION CURVES FOR SIMPLE PORE GEOMETRIES 

We assume in what follows that the exclusion coefficient, K, of a solute depends 
only upon the size and shape of the solute molecules and upon the size and shape of 
the pores in the column packing material. We also assume that the molecules of 
solute can be considered rigid, and that band spreading arises only from kinetic 
effects and the polydispersity of the sample, as shown by Knox and McLennani l, 
amongst others. 

The way in which K is expected to depend upon molecular size can be illus- 
trated by a simple example. The solute molecule is taken as a “hard sphere” of radius 
r and the pore is an infinite cylinder of radius R. Since the centre of mass of the 
molecule cannot approach closer than a distance r from the wall of the pore, the part 
of the pore volume accessible to the centre of mass is a cylinder of radius (R-r). 
Thus the exclusion coefficient, which is equal to the fraction of the total pore volume 
accessible to the molecule, is 

K = (1 -;)I; (;) < 1 

K = 0; 0 f >1 

(34 

(3’3 

The above example is a special case of the general equation for spherical mole- 
cules, which gives K as the ratio of the volume of pores accessible to the centre of 
mass of the molecules (V,) to the total volume of the pores (VP) 

(4) 

This simple hypothesis ignores problems of access to pores which may have 
restricted entrances. However, we may assume that swollen polymer molecules, even 
if apparently spherical for a high proportion of time, will be able by random processes 
to achieve configurations suitable for squeezing through narrow pores, even if their 
mean time of residence in such pores is very small. Thus, the problem is one of mass 
transfer, not of thermodynamic equilibrium. 

For non-spherical molecules the problem of calculating K is complex, since the 
distance of closest approach of the centre of mass to the pore wall by, say, a rod-like 
molecule depends upon its orientation relative to the wall. The problem is soluble by 
statistical methods and has been treated by Giddings et aL9. V. and VP can now be 
regarded as volumes in configuration phase space. 

In this paper we restrict ourselves to essentially spherical molecules which will 
be assumed to be rigid. This applies with reasonable accuracy to many synthetic 
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Fig. 2. Illustration of exclusion from pores of simple and random sphereI* model with appropriate equa- 
tions for exclusion coefficient K. 

polymers in good solvents whose random chains on the average fill a roughly spher- 
ical space. 

Exclusion curves for spherical molecules are readily calculated for simple pore 
geometries’O. Equations for a number of such cases, including the cylindrical pore, 
are given in Fig. 2. The pore of the “inverse cylinder” model consists of the space 
between touching cylinders (three or four) and that of the “regular sphere matrix” 
(see below) is the space between touching spheres positioned at the comers of a cube. 
The random sphere mode112*13, also included in Fig. 2, is discussed below. 

Exclusion curves for the simple geometrical models are given in Fig. 3, where 
K is shown as a function of the Naperian logarithm of the molecular radius ratio, 
r/R. 

All curves in Fig. 3 have broadly similar shapes. The following points may be 
noted. (1) For small molecules the curves descend very steeply, showing a decreasing 
change in K as the size falls to zero. (2) For molecules of intermediate size there is 
a region where K depends more or less linearly on In (r/R). This covers a roughly 
five-fold range of (r/R). (3) For large molecules near the exclusion limit there is 
generally a slight upward curvature of the exclusion curve which is most noticeable 
for the “regular sphere matrix”. In general, experimental curves show much more 
gradual transitions to complete exclusion, a somewhat steeper gradient in the inter- 
mediate region, and a less pronounced descent at K approaching unity. 

It is noted that the curves for the inverse cylinders and simple cubic matrix cut 
the vertical axis (the point corresponding to complete exclusion) below the origin 
[corresponding to (r/R) = 11. This is an artefact of the definition of R as the radius 
of the typical element rather than as the radius of the largest sphere, R’, which can 
be accommodated. The ratios R'/R for the different cases are 0.732 for regular sphere 
matrix, 0.414 for the inverse 4-cylinder, and 0.153 for the inverse 3-cylinder. Re- 
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Fig. 3. Exclusion curves for simple models. r = Radius of polymer molecule; R = radius of structural 
unit (see Fig. 2 and text). 

plotting the curves in terms of (r/R’) brings them very close together, as shown in 
Fig. 4. 

In order to compare experimental data obtained by elution of a particular 
solute from a particular matrix with theoretical predictions based upon a model, it 
is necessary to know the relationship between molecular radius and molecular weight 

ii.0 0.2 8.4 0.6 0.8 1.E 
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Fig. 4. Exclusion curves for simple models. r = Radius of polymer molecule; R’ = radius of largest sphere 
which can be accommodated by model pore. Experimental data is for Hypersil from Fig. 1. 
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for the solute, along with some broad geometrical properties of the matrix, such as 
mean pore diameter and porosity. 

The effective radius of a sphere, r, is related to its radius of gyration, rp, by 
eqn. 5. 

r = 0.886 rB (9 

and for random chain polymers rB is given by eqn. 6. 

rB = aMb (6) 

where M is the relative molecular weight. Use of published values of the constants 
a and b for polystyrenes3*13 gives eqn. 7 for the effective sphere radius r of polystyr- 
enes: 

r/A = 0.123~.5*8 (7) 

In order to obtain appropriate characteristics of the matrix, in this case Hypersil, we 
assume that the material is made up of random-sized colloidal spheres. The specific 
surface area is about 200 mz g-i, and the density of silica is 2.20 g cmw3. The mean 
colloidal sphere radius, R, is then 68 A. The mean pore radius, R’, will be different 
from R, but in view of the complex geometry of the space in the material no simple 
estimate of r/R’ is possible. Accordingly, a value of 68 A is used for both R and R’. 

Fig. 4 compares the theoretical curves for the simple models, plotted on the 
basis of In (r/R’) against K, with the experimental data for Hypersil. The fit is seen 
to be surprisingly good in view of the approximation R’ = R in Hypersil. Closer 
examination shows that the fit is good in the central region both as regards position 
and gradient but poor at the extremes. At both high and low MW the experimental 
data lie above the theoretical curves. As seen later the discrepancies are explained by 
noting that even small molecules, such as benzene, have finite size and are partially 
excluded from the pore volume and that real materials have a range of pore sizes. 

The theoretical exclusion curves presented in Figs. 3 and 4 do, however, 
emphasise that even for uniform pores there is no sudden transition from total per- 
meation to total exclusion, as has sometimes been assumed14, and that the pore shape 
has little effect on the theoretical curves. 

EXCLUSION CURVES FOR RANDOM PORE MODELS 

The pore models so far described have been of regular geometry, and each 
model consists of pores of a single uniform size. Clearly no such model can accurately 
represent real packing materials for SEC. While the nanometre-sized units which 
make up the particles of such materials may well be spherical, neither they nor the 
pores which they define will be of a uniform size, nor will they be positioned in a 
regular array. 

One model which overcomes some of these shortcomings is the random-sphere 
model12 used by Van Krefeld and Van den Hoedi3. This model is generated by 
growing spheres of equal size centred on random points in space. The spheres are 
allowed to overlap as required. The void volume of such a model is simply calculated 
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by statistical methods and the exclusion curve is calculated by first of all setting the 
porosity at some starting value (for example the porosity of the experimental mate- 
rial) and then calculating porosities with increased sphere sizes. The starting sphere 
diameter is taken as R and the subsequent sphere diameters represent (R + r). Kis then 
found as the ratio of the porosity at (R +.r) to the porosity at R. Van Krefeld and Van 
den Hoed’ 3, using this model, obtained more or less perfect agreement between their 
predictions and data obtained with Porasil. 

This model, however, may be criticised on the grounds that it is still composed 
of uniform-sized spheres and that their overlap may not properly model the real 
situation where colloidal spheres of random size are simply agglomerated and only 
make contact over an extremely small area. 

Our objective was to develop and test a somewhat more realistic model. The 
radii of the spherical units were accordingly chosen randomly from a Gaussian dis- 
tribution and, in assembling the model, these spheres were not allowed to overlap. 
In this way, the proportion of the pore volume in the cusp-shaped regions between 
touching spheres would be maximized, while the random distribution of unit sizes 
would provide a somewhat wider pore-size range than possible with any uniform 
sphere model. Since statistical methods are no longer applicable, computer calcula- 
tion was used both to assemble the model and to evaluate its properties. 

Computer simulations of random packings of spheres have been carried out 
by various groups. Adams and Mathesonis considered packing spheres in a centro- 
symmetric gravitational field. Visscher and Bolsterli16 assumed a uni-directional field; 
their method is similar to packing ball-bearings into a jar. Although the model de- 
veloped below has features in common with both, it was developed quite indepen- 
dently, and differs significantly in the range of sphere radii considered. 

Two models were developed. The first consisted of random touching circles, 
and the second of random touching spheres. In each case it is the space between these 
units which is under consideration. The “touching sphere” model is the three-di- 
mensional analogue of the “touching circle” model which is, of course, equivalent to 
a “touching cylinder” model. 

Flow diagrams for the “touching circle” and “touching sphere” models are 
shown in Fig. 5. For both models, the radii are produced from a pseudorandom 
normal distribution with a mean of one unit. In the “circles” model standard devia- 
tions of 0.1 and 0.3 units were used, in the “spheres” model the standard deviation 
was 0.1 unit. 

The first step in the “circles” program is to define a base upon which future 
circles will rest. This base consists of a line of touching circles of randomly chosen 
radii, but with their centres on the x-axis. The final circle on this base becomes the 
starting circle for positioning the first circle of the next row. 

All subsequent circles are positioned to touch the previously positioned circle, 
and (if possible) the nearest circle to it in a specified direction. The position of the 
centre of the new circle is at the third vertex of a triangle whose other vertices are at 
the centres of these two circles. The length of the sides are defined by the radii of the 
two starting circles and the new circle. 

As shown in Fig. 6A, there are two possible positions for the centre of the new 
circle, as defined by the above algorithm. If the new circle impinges on any other 
circle as a result of the first solution, the alternative solution is examined. If neither 
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Fig. 5. Flow diagrams for computer assembly of models of (A) touching circles, (B) touching spheres. 
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Fig. 6. Illustration of geometrical constructions for assembling model of touching circles. (A) Case where 
nearest-circle to last-added-circle provides position of new-circle. (B) Case where circle other than 
nearest-circle must be used. 

solution is successful, as shown in Fig. 6B, an alternative choice of the second starting 
circle is required. 

This process is repeated with appropriate reversal of the direction of search 
after each row is completed. The program terminates when the array is about as tall 
as it is long. 

In the “sphere” model the base was replaced by a core of five spheres with 
radii close to unity. Each subsequent sphere requires three spheres to rest on, and 
the position of the centre of the new sphere is the fourth vertex of a tetrahedron. The 
other three vertices are the three spheres on which the new sphere rests, and the 
remaining edges have lengths defined by the sum of the new sphere radius and the 
radii of these “base” spheres. The solution to the tetrahedron problem is given by 
Scott’7. 

Again two possible solutions are available, and both positions for the centre 
of the new sphere are tested to see whether the new sphere impinges on any other 
sphere. If neither position is satisfactory then other base spheres are used until a 
permissible position for the new sphere is found. 

In building the “sphere” model it sometimes happened that no satisfactory 
solution could be found, or that a “string” of spheres was produced which reached 
the intended boundary of the array without filling the space around the string. In 
these cases a completely fresh starting sphere was used, rather than the last sphere 
added. This required operator intervention, but we do not believe that this signifi- 
cantly corrupted the randomness of the model. 
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std. dew. = 10% std. devn. = 30% 

Fig. 7. Computer-assembled arrays of random-sized touching circles. Standard deviation of circle radii 
= 0.1 and 0.3 units, mean circle radius = 1 unit. 

The completed arrays of circles contained about 100 circles. A central region 
only was used for the calculation of exclusion curves in order to avoid edge effects 
and the effect of the base line of circles. The portions of the arrays used for further 
calculations are shown in Fig. 7. The porosities of these arrays are 18.7% and 21.1%, 
respectively. 

The completed array of spheres contained about 1800 spheres, from which a 
central portion containing about 1600 spheres was used for exclusion coefficient cal- 
culations. Two sections through the array are shown in Fig. 8. The variation in circle 
size and the fact that they do not touch arises, of course, from Fig. 8 being a section 
through the array of spheres: about half of the circles represent spheres with centres 
above the plane of the figure and the remainder below. The porosity of the array was 
calculated (see below) to be 43%, which is close to the experimental value of 3745% 
for arrays of randomly packed spheres but well below 61%, the porosity of Hypersil. 
A full listing of the radii and the coordinates of the centres of the spheres may be 
obtained from the authors. 

To calculate the porosity of the arrays of circles, and to derive the exclusion 
curves, each array was examined point by point. The fractional void volume or po- 
rosity was then given by the ratio of the number of test points found to be outside 
the circles to the total number of test points. The distance between neighbouring test 
points was as small as practicable within the constraints of available computer time 

std. devn. q 10% 

Fig. 8. Sections through array of random-sized touching spheres having standard deviation of sphere 
radius = 0.1 unit, and mean sphere radius = 1 unit. 
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Fig. 9. Exclusion curves for complex models (for details see text). Experimental data for Hypersil from 
Fig. 1. 

(typically 10 points per linear unit). Exclusion curves for the “circle” models were 
calculated by increasing the radius of each circle by the molecular radius under con- 
sideration and re-calculating the void volume by the above method. 

For the array of spheres a more efficient method for obtaining the exclusion 
curve was required. For each test point in the unoccupied space the shortest distance 
to a sphere surface was calculated. Molecules with radii greater than this distance 
were then “excluded” at this point. In this way each test-point needed to be con- 
sidered only once. The results are shown in Fig. 9 along with the experimental data 
for Hypersil positioned on the In (r/R) axis, using the calculated mean sphere radius 
R = 68 A. 

Fig. 9 also includes curves calculated for the random sphere model of Van 
Krefeldi3. For this model 

In $(a+,) = G R N(R + r)3 (84 

where N is the number of spheres per unit volume, and 

K = ~R+~JJ/R (gb) 

Two curves are shown, one based on JIR = 0.43 the porosity of the model of 
random touching spheres, and the second based on +R = 0.61, the experimentally 
measured porosity of Hypersili l. 

The theoretical curves of Fig. 9 all have the same general shape. The models 
based on circles or spheres of a range of size, that is the models developed by us, 
show a steeper central portion than does the uniform-size random sphere model of 
Van Krefeld: it is also noticeable that the circle model with the wide range of circle 
sizes (S.D. = 0.3) gives a slightly steeper curve than the model with the narrower 
range (S.D. = 0.1). 



322 J. H. KNOX, H. P. SCOTT 
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Fig. 10. As for Fig. 9, but experimental data adjusted to give K (benzene) = 0.92. 

The two curves for the Van Krefeld model show the effect of adjusting the 
porosity of the model. When the porosity is increased, the mean pore size, R’, in- 
creases relative to the radius of the spherical units R, and therefore the exclusion 
curve when plotted on the basis of r/R is higher the larger the porosity. 

The comparison of experimental and calculated curves shows the excellent 
agreement between experiment and the Van Krefeld model with the correct porosity, 
but the same divergencies are noted as when using simple geometric models (see Fig. 
4). It might be expected that an upward adjustment of the porosities of our models 
would likewise raise the curves, bringing them into better agreement, but first we 
address the problem of the divergence between experiment and theory at the low- 
molecular-weight end of the scale. As K approaches unity the theoretical curves all 
turn sharply downwards while the experimental curve is rather flat. The reason for 
this is primarily that even a small molecule, such as benzene, has a finite size and, 
when attempting correlation with theoretical calculations, it must be assigned an 
appropriate value of K less than unity. 

Using the random touching sphere model in conjunction with the known mo- 
lecular radius of benzene and the unit size in Hypersil, K for benzene is calculated 
to be 0.92. Thus, the experimental curve should be compressed laterally so that the 
last point appears with this K value. Fig. 10 shows the data replotted in this way. It 
is now noted that as far as gradient is concerned, the random-size touching sphere 
and circle models provide a better fit than the uniform-size random sphere model. 
This illustrates the importance of building into the model an adequate pore size 
distribution by using building units with a range of sizes. 

Two requirements must evidently be met if a model is to provide quantitative 
agreement with experiment. (1) The porosity of the model must be the same as that 
of the experimental material. (2) The model must provide an adequate range of pore 
size by employing building units of a range of sizes. It appears that a standard de- 
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Fig. 11. Effect of increasing porosity on exclusion curve for random-size sphere model. “Computer sphere 
model” has porosity of 43%; “modified sphere model” has porosity increased to 56% by randomly re- 
moving spheres from the array. Experimental data for Hypersil, plotted as in Fig. 10. 

viation of between 0.1 and 0.3 meets this requirement for a material like Hypersil. 
Our present model comprising random size touching spheres is not as readily 

amenable to alteration of porosity as in the Van Krefeld model. We have therefore 
adopted the method of “removing” spheres at random in order to produce an ap- 
propriate porosity and also a wider range of pore sizes. In this way, the porosity has 
been increased from 43 to 56%, fairly close to the 61% of Hypersil. Fig. 11 shows 
that this procedure results in almost perfect agreement between theory and exper- 
iment, except at the highest molecular radii. 

PREDICTION OF EXCLUSION CURVES FROM POROSIMETRY DATA: SIMPLE MODELS 

WITH A RANGE OF UNIT SIZE 

All curves for the random sphere or circle models show a better fit to exper- 
iment than do the simple geometric models. However, the improvement is not as 
decisive as might have been expected. Indeed, the rather slight improvement in going 
from the simplest model of a uniform cylindrical pore to the most complex model of 
random size touching spheres is something of a disappointment. The question then 
arises as to whether adaptation of the simple models to include a range of pore sizes 
might not be a simpler and possibly more useful approach of prediction of exclusion 
curves. 

Mercury porosimetry provides a means of determining experimentally the pore 
size distribution of any material. The results are interpreted on the basis of an as- 
sumption that the pores of the material are cylindrical”’ and therefore that the ma- 
terial consists of a structure containing a range of cylindrical pores. If this model 
were realistic then an exclusion curve should be readily calculable from the pore size 
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distribution. It is easily shown (see Appendix) that if f(R) is the volume fraction of 
pores of radius R, then the exclusion coefficient for a molecule of radius, r, is given 
by eqn. 9. 

(9) 

For a continuous distribution function, where f’(R)dR represents the fraction of pore 
volume within a range R to R +dR, K is given by eqn. 10. 

R=m 

K= j+ f’(R)(I-;)2dR (10) 
R= r 

The full pore-size distribution curve (cumulative) for 5 pm Hypersil particles 
is shown in Fig. 12. There is a fairly clear distinction between the relatively wide 
pores which occur between particles (interparticle pores) and the much smaller pores 
which occur within the particles (intraparticle pores). However, in regard to the ex- 
clusion phenomenon there is no distinction between the two types of pores, and 
exclusion of suitable sized molecules will occur from both inter- and intra-particle 
pores. Small enough molecules will penetrate the smallest intraparticle pores, while 
sufficiently large molecules may be partially excluded from some of the inter-particle 
pores. In order to make use of eqns. 9 and 10 it is therefore important to decide upon 
the maximum pore diamter which need be included in any theoretical treatment; that 
is one must decide upon a suitable radius at which the pore size distribution curve 
can be truncated without introducing significant error in the calculated exclusion 
curve. Because molecules are partially excluded even from pores which are consider- 
ably larger than the diamter of the molecule itself, it is clear that this truncation must 
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Fig. 12. Complete pore-size distribution curve for 5 pm Hypersil obtained by Mercury porosimetry (Coul- 
ter Instruments). Arrow indicates cut-off point for calculations. 
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Fig. 13. Pore-size distribution curve used for calculations. (0) Experimental data; full line from smoothed 
data used for calculation; segments used for f(R) are indicated by % of total pore volume; (0) calculated 
pore size distribution (see text). 

be at a value of R which is many times greater than the radius of the largest molecule 
of interest. Roughly speaking, an appropriate value will be not less than ten times 
the maximum molecular diameter unless the fraction of large pores is itself very small. 
By truncating the pore-size distribution curve at a pore radius well above that of the 
largest molecule it will be found that the K value for this molecule will not be zero 
but will have some positive value I& Since it is normal to assign a K value of zero 
to such a molecule, an adjustment to the calculated K values is required. This is given 
by the simple eqn. 11. 

K new = (K - Ko)/(l - Ko) (11) 

s 
f 

-2 . 

0 MOOIFIED EXPERIMENTAL OATA 
.-.CURVE FROM POROSIMMETRY DATA 

-4 . 

Exclusion Coefficient 
Fig. 14. Comparison of experimental data for Hypersil with exclusion curve calculated from pore-size 
distribution curve of Fig. 13. 
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In the case of Hypersil (Fig. 1) the largest molecular radius was 700 A and the 
most convenient cut-off point on the calibration curve (Fig. 12) was at R = 4000 A, 
a value of R just below that at which the interparticle pores start contributing to the 
pore volume. Accordingly, the pore size distribution curve used is that given in Fig. 
13; some smoothing of the experimental data has been introduced. The pore volume 
was divided into convenient segments, as shown in this figure: the proportion given 
beside each segment is the value used for f(R) in eqn. 9. & for the 700 A radius 
polystyrene was found to be 0.013, and eqn. 11 was used to obtain new K values such 
that K for this species was exactly zero. The theoretical exclusion curve so calculated 
for Hypersil is shown in Fig. 14. The agreement between experiment and theory is 
extraordinarily good and well within experimental error. 

It is important to note that no adjustable parameters have been used in making 
the correlation between experiment and theory. The experimental exclusion data rely 
only upon direct measurement of retention times, and the use of the well-established 
eqn. 7 relating the radii of random coil polymeric polystyrenes to their molecular 
weights; the theoretical curve is calculated using totally independent porosimetry 
data obtained by an independent laboratory (Coulter Electronics, Dunstable, U.K.). 

The excellence of the fit between theory and practice establishes again that the 
exclusion phenomenon can be quantitatively explained on a purely steric basis and, 
of more practical importance, that the exclusion curve for elution of spherical poly- 
mer molecules from non-adsorbing matrix can be calculated from mercury porosi- 
metry data. 

DETERMINATION OF PORE-SIZE DISTRIBUTION FROM AN EXPERIMENTAL EXCLUSION 

CURVE 

It is fairly obvious that, if a dependence of K upon T can be established by 
experiment for any material, then it should be possible to deduce the form of the 
pore-size distribution curve by inversion of eqn. 10. Curves, such as those shown in 
Figs. 12 and 13, are, of course, cumulative pore-size distribution curves and are 
related to the differential pore-size distribution function f’(R) by eqn. 12. 

R 

g(R) = 1 - 
s 

f’(r) dr (12) 

0 

Using eqn. 10, it may be shown (see Appendix) that f’(R) is given by eqn. 13 

r=R 
(13) 

g(R), obtained by integration, may then be expressed in either of two forms given by 
eqns. 14 and 15 (see Appendix). 

g(R) = K- R($),_R + F(g),_ (14) 
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g(R) = K- :(,f;!=R + (i&)_ (15) 

The second of these equations is the more useful, since it makes direct use of the 
usual plot of In r against K. In order to exploit eqn. 15 to maximum advantage it is 
desirable to fit the experimental exclusion data to a smooth analytical expression, 
such as a polynomial, so that explicit expressions can then be obtained for the dif- 
ferentials. Alternatively, it is possible to differentiate the smoothed exclusion curve 
graphically and so derive the cumulative pore-size distribution curve. In Fig. 13 the 
graphical procedure has been applied to derive the points marked by circles. Agree- 
ment with the original, smoothed experimental curve is seen to be excellent, even 
with such a simple calculation procedure. 

The application of this method to the SEC calibration curves of Fig. 1 is shown 
in Fig. 15. For this purpose the exclusion curves have been redrawn as plots of K 
against In r, (Fig. 15A). These curves are differentiated graphically to give first and 
second derivatives functions of In r. Finally g(R) is obtained using eqn. 15. The 
resulting cumulative pore-size distribution (PSD) curves are shown in Fig. 15B. 

These curves show a number of interesting features. Firstly, the PSD curves 
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Fig. 15. Pore-size distribution curves derived from size-exclusion calibration curves. (A) Experimental 
SEC data plotted as dependence of K upon In I (data of Fig. 1). (B) Calculated pore-size distribution 
curve, obtained by graphical differentiation of SEC curves and application of eqn. 15. Points are indi- 
vidually calculated values. 
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show a much steeper dependence upon pore radius than do the plots of K against In 
r. This is as expected, since even a step function PSD (such as that representing a 
uniform cylinder) gives a sloping dependence of K upon r (Figs. 3 and 4). Secondly, 
the five materials show significantly different PSD curves. The narrowest PSD is 
exhibited by the new WLCU experimental wide-pore, high-porosity silica gel, which 
has a PSD curve rather similar to that of the experimental material SG60F, produced 
by AERE, Harwell, U.K. This latter material was, however, extremely fragile in 
contrast to the WLCU material. Hypersil has a slightly wider PSD with a significant 
proportion of pores substantially larger than the mean. The PSM materials, produced 
by Du Pont technology, have much broader PSD’s and the small-pore material 
PSD60 has a particularly large proportion of both large and small pores. Fig. 1 shows 
that the newer WLCU material (HR-WPS) has a relatively large value of I’,,/ V,, which 
is desirable for SEC where peak capacity is a strong function of this ratio, whereas 
the PSM materials of relatively low particle porosity (50-60%) have a rather small 
V,/ V0 ratio. 

It is evident that the pore-size distributions may now be simply determinedfrom 
experimental exclusion curves of the spherical polymer molecules eluted from SEC 
materials. 

The above results may usefully be discussed in relation to a previous proposal 
by Hal&z and co-workers 14,1g~20 for determining pore-size distributions from exclu- 
sion data. The method proposed by Hal&z uses the exclusion curve directly as a 
measure of the cumulative pore size distribution curve. He states, for example (ref. 
14), “determination of the elution volumes of two standard samples with molecular 
weights M1 and Mz (where M1 < M,) gives the relationship AV = Ve,l - V,,,. 
AV is the volume of pores within the column that have a diameter greater than cpl 
and smaller than cpZ”. This is equivalent to the assumption that the exclusion curve 
for a matrix of uniform cylindrical pores is a horizontal straight line, that is, that 
there is a sudden change from total exclusion when r> R to total permeation when 
r < R. Regrettably, this assumption is incorrect, as can be seen from Figs. 2 and 3 
and, in general, from the introductory section of this paper and other similar treat- 
ments3. The discrepancy between the pore-size distribution curves obtained from the 
two theories is well illustrated by Fig. 15. According to the proposal of Halasz, Fig. 
15A would represent the PSD curves for the materials in question. His method has 
two serious defects in practice: (1) the true pore-size distribution curve lies at con- 
siderably higher R values than does the (K,r) curve; (2) the true pore-size distribution 
curve shows a much sharper transition from zero to unity than does the (K,r) curve. 
In order to overcome the first defect, Halaszi4 was forced to “assign pore sizes by 
trial-and-error to the standards of the calibration series, in such a way that the max- 
ima of the pore-size distribution curves, as measured by exclusion chromatography, 
agreed with the values obtained by classical measurements”. In order to do this “the 
pore diameter o of a solid assigned by us to a standard polystyrene of molecular 
weight, li;iw, is 2.5 times as large as the coil diameter o of molecules of the same 
polystyrene”. It may be seen from Fig. 15 that shifting the (Kr) curves about 1.1 In 
units to higher r values would in fact, make their inflection points more or less co- 
incide with those of the pore size distribution curves, that is to fit the two curves 
would require r to be increased by a factor of about 3 rather than 2.5, but, of course, 
the slopes of the curves would still be wrong. It is clear that the difficulties which 
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were encountered by Hal&z’ 4 in applying his theory arose entirely from an incorrect 
initial assumption*. By using the correct formulation of the exclusion of spherical 
molecules from cylindrical pores an entirely self-consistent theory of exclusion can 
be derived, which gives quantitative agreement between experiment and theory with- 
out any arbitrary assumptions. 

The problem of deriving pore-size distribution curves from measurements in 
exclusion chromatography may now be considered solved. 

CONCLUSIONS 

Several models have been found to predict size exclusion calibration curves 
with high precision. The best of these theoretical models are the random-sized touch- 
ing sphere model, developed by the authors, and the uniform-sized random-sphere 
model of Van Krefeld and Van den Hoed. Both models give excellent quantitative 
fits to experimental data with no adjustable parameters. The main features which a 
model must possess to give accurate quantitative prediction of SEC calibration curves 
are: 

(1) the model should possess the same porosity as the material being modelled 
so that there is a realistic relationship between the pore size and the basic structural 
unit of the model. 

(2) the model must exhibit a sufficient range of pore size. This is best achieved 
by employing building units which themselves have a range of sizes and by assembling 
them in a non-uniform manner, 

(3) to model very wide pores which appear in real materials it may be necessary 
to introduce arbitrary defects into the model. 

In general, these models fit best in the region of low and intermediate molecular 
weight and least well at high molecular weight. This is almost certainly due to the 
presence of large pores in real materials, which cannot be satisfactority modelled. 

It is shown that SEC calibration curves can also be predicted with remarkable 
accuracy from mercury porosimetry data, by using a model consisting of an assembly 
of cylindrical pores having the pore size distribution given experimentally. Inversion 
of this procedure enables the pore size distribution of a material to be derived from 
the SEC calibration curve. The method is applied to five representative SEC materials 
which show significantly different pore-size distributions. The new procedure pro- 
vides an important new method for determination of pore size distributions in me- 
soporous materials. A serious error in previously recommended procedures is noted 
and corrected. 

APPENDIX 

Derivation of eqns. 9 and 10 
K is the fraction of the total pore volume of the matrix which is accessible to 

l Note added in proof: This same error has been included in two recent treatments of the derivation 
of pore-size distributions from polymer exclusion curves, namely the papers by F. V. Warren, Jr. and B. 
A. Bidlingmeyer, Anal. Chem., 56 (1984) 950 and by R. D. Hester and P. H. Mitchell, J. Liq. Chromatogr., 
7 (1984) 1511. 
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a molecule of radius r. We assume the matrix to be made up of an array of cylinders. 
The fraction of the total volume comprising cylinders of radius R is denoted by f(R). 

For any group of cylinders of radius R the fraction of volume accessible to a 
molecule of radius r is given by eqn. 1, namely 

R>, r (1) (a) 

The volume of this group of cylinders is f(R)?-’ where V is the total volume of all 
cylinders. Thus the amount of accessible volume for this group of cylinders is 

V BCC = 2f(R)V 

The total accessible volume for all groups of cylinders is 

V.,, = f (1 - ;)’ f(R)V 
R=r 

The fraction of volume accessible is then 

K=+ ;f(R) 
R=r 

(4 

(9) (d) 

Alternatively, if f’(R)dR is the fraction of pore volume contained in pores having 
radii between R and R+dR, eqn. 10 may be derived. 

K=+= jf’(R)(I _;)2dR 

I 

(10) 

It is important to note that K is a function only of r and that the integration limits 
are from r to infinity, since negative values of (1 - r/R) must not contribute. 

Derivation of eqns. 13 and 14 
Differentation of eqn. 10 gives 

$= - [f’(R)(l - R)2]._. - ]if’(R)(I - R)dR 

I 

(e) 

The first term on the right-hand side is zero. Differentiating a second time gives 

g= + [;f’(R)(l - ;)-jzr + f&‘(R)dR 
I 
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Again the first term on the right-hand side is zero. Differentiating a third time gives 

d3K -- 
hr3- [ 1 $f'(R) = - R=? f f'(r) 

or rearranging 

f’(r) = - c !?$ ( > 

(g) 

(13) (h) 

The cumulative pore size distribution, g(R), is obtained by integration of f’(R) as 

R 

g(R) = 1 - f’(R) dR 
s 

(i) 

0 

R 

=1+ 
s 

r2 d3K 
- __ dr 
2 dr3 

0) 

0 

Integrating by parts and noting that K = 1 when r = 0 gives finally 

iit(R) = Fe),=, - Re)r-R + K (14) (W 

In this equation d2K/dr2 is always positive while dK/dr is always negative. Thus all 
three terms contribute in the same direction to g(R). 

Since g(R) and K are normally plotted as functions of In R, it is more useful 
to express g(R) in the form of eqn. 15. 

Now, the first term changes sign, being negative at low r and positive at high r. The 
second term, however, is always negative. 
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